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ABSTRACT 

The ability to innovate successfully is a key corporate capability, depending 

strongly on firms’ access to knowledge capital: proprietary, tacit and 

embodied. Here, we focus on one specific source of embodied knowledge 

– advanced manufacturing technologies or AMTs – and consider its impact 

on firms’ innovation success. AMTs relate to a series of process 

innovations which enable firms to take advantage of numerical and digital 

technologies to optimise elements of a manufacturing process. Using panel 

data for Irish manufacturing plants we identify lengthy learning-by-using 

effects in terms of firms’ ability to derive innovation benefits from AMT 

adoption. Disruption effects are evident in the short-term while positive 

innovation benefits occur six-plus years after adoption. Strong 

complementarities between simultaneously adopted AMTs suggest the 

value of disruptive rather than incremental implementation strategies. 
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1. INTRODUCTION 

The ability to innovate successfully is a key corporate capability, depending 

strongly on firms’ access to knowledge capital: proprietary, tacit and 

embodied (Al-Laham, Tzabbar, and Amburgey 2011; Wu and Shanley 

2009; Tzabbar et al. 2008; Kyriakopoulos and de Ruyter 2004). The 

relationship between proprietary knowledge (e.g. patents) and innovation 

has been widely explored (Artz et al. 2010; Mansfield 1986), as has the 

relationship between innovation and tacit or un-codified knowledge (e.g. 

workforce skills) (Knockaert et al. 2009; Ichijo and Kohlbacher 2008). Less 

attention has been paid to the impact on innovation of the knowledge 

embodied in firms’ capital equipment. Here, we focus on one specific 

source of embodied knowledge – advanced manufacturing technologies or 

AMTs – and consider its impact on firms’ innovation success. AMTs relate 

to a series of process innovations which enable firms to take advantage of 

numerical and digital technologies to optimise elements of a manufacturing 

process. These may relate to the control of individual pieces of production 

equipment – as in numerically controlled, computer numerically controlled 

(CNC) machinery or robotics – the automated movement of items during 

the manufacturing process – as in automated materials handling (AMH) – 

or the integration and optimisation of the production process  - as in 

computer aided production management or computer integrated 

manufacturing (CIM) (Zammuto and O'Connor 1992). 

Previous studies have considered the factors which shape firms’ adoption 

of AMTs, suggesting positive links between AMT adoption and firm size, 

skill levels and more flexible organisational cultures (Zammuto and 

O'Connor 1992). A limited number of studies have also attempted to 

quantify the impact of AMT use on employment and productivity. 

Bartelsman, Van Leeuwen, and Nieuwenhuijsen (1998), for example, report 

higher average growth rates of total factor productivity and employment for 

Dutch firms which employed AMT. Employment growth has also been 

linked to AMT use in France, the UK and the US, while employment 

reductions have been noted in Italy, Norway and Denmark (Bartelsman, 
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Van Leeuwen, and Nieuwenhuijsen 1998). Arvantis and Hollenstein (2001), 

in their study of AMT adoption in Switzerland, highlight the need for further 

analysis of the relationship between technology diffusion and economic 

growth. In terms of the relationship between AMTs and innovation, 

research is limited. However, Barge-Gil et al. (2011) consider the impact on 

innovation where a firm uses forms of computerised aided manufacturing 

(CAM), robotics or CAD/CAM. In their data for Spain, adoption of AMTs is 

strongly correlated with firm size but only weakly correlated with other firm 

characteristics such as R&D intensity or design. AMT adoption then has a 

positive and significant effect on the probability of product innovation only 

for non-R&D performers but a positive impact on probability of process 

innovation for both R&D performers and non-performers.  

Other studies report the influence of AMT in the innovative process for low-

and-medium technology firms (Santamaría, Nieto, and Barge-Gil 2009) and 

for small firms (Raymond, Croteau, and Bergeron 2009). Both studies 

suggest the potential value of considering in more detail the factors which 

may condition the effects of AMTs on innovation. Other studies have also 

suggested the difficulties which firms face in the effective implementation of 

AMTs, creating the potential for disruption effects, learning-by-using effects 

and time-lags in the effect of AMTs on innovation (Tyre and Hauptman 

1992).  

Using panel data for Irish manufacturing firms, which provides AMT 

adoption histories, we focus here on the relationship between innovation 

and the prior adoption of AMTs. Specifically, we ask whether, and over 

what period, the adoption of AMTs impacts on firms’ innovation success. 

The AMTs examined include computer-aided manufacturing (CAM), 

automated materials handling (AMH), computer-integrated manufacturing 

(CIM) and robotics. Most, if not all, of the prior studies of the relationship 

between AMTs and innovation have been based on cross-sectional data 

making causality difficult to identify, and providing little information on the 

nature of the learning effects and lags involved in AMT adoption and the 

potential benefits for innovation. Our study makes three main contributions. 
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First, it clearly highlights the temporal profile of the performance benefits of 

individual AMTs, highlighting short-term disruption effects but longer-term 

benefits. Second, it highlights complementarities between the adoption of 

specific AMTs, and third it suggests the role of learning-by-using effects in 

the shaping of the AMT–innovation relationship (Rosenberg 1982).  

The rest of the paper is organised as follows. Section 2 provides a brief 

overview of AMTs, and their degree of integration in the manufacturing 

process; a discussion of the relationship between innovation and AMTs; 

and, the role of complementarities learning-by-using effects in the 

enhancement of firms’ innovation performance. Section 2 also outlines our 

three hypotheses relating to the potential impacts of prior AMT adoption on 

innovation. Section 3 describes the data used in our study. Our empirical 

analysis is based on a panel dataset relating to Irish manufacturing firms 

which were surveyed at regular intervals over the 1994-2008 period. 

Section 4 outlines the main empirical results and Section 5 discusses the 

implications of this work. Variable definitions are included in an Annex.  

2. CONCEPTS AND HYPOTHESES 

2.1 AMTs – standalone and integrated manufacturing processes 

AMTs relate to a series of process innovations which enable firms to take 

advantage of numerical and digital technologies to optimise elements of a 

manufacturing process. We briefly describe the four AMTs studied in this 

paper and subsequently categorise them based on the extent to which they 

integrate elements of the manufacturing process. 

Computer-aided manufacturing (CAM) is the use of computer software to 

control machine tools and related machinery in manufacturing process and 

would include processes such as numerically controlled machining, laser 

cutting, water-jet cutting and robot control. Automated Materials Handling 

(AMH), sometimes called automated storage/retrieval systems, involves the 

automated movement of items during the manufacturing process. Such 

systems may use high-rise stacker cranes, automated guided vehicle 
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systems, computerized conveyors, computerized carousels, and other such 

systems to store and retrieve materials. Computer-integrated 

manufacturing (CIM) involves integrated systems of NC machines, robots, 

material conveyors, and other such computer-driven equipment. Robotics 

may involve simple pick and place robots, with 1, 2, or 3 degrees of 

freedom or more sophisticated robots that can handle tasks such as 

welding or painting on an assembly line and may also have the benefit of 

trajectory control (Kotha and Swamidass 2000).  

In terms of their potential impact on innovation it is useful to consider the 

degree to which specific AMTs play an integrated role in the production 

process with one classification describing AMTs as standalone, 

intermediate and integrated systems (Spanos and Voudouris 2009) 1. 

Stand-alone AMTs relate mainly to single items of equipment that are not 

directly connected with other machines or systems. For example, in most 

cases, CAM represents a stand-alone technology. Intermediate AMTs, 

such as AMHs, represent groups of interconnected and automated 

machines that do not communicate directly with systems external to the 

group. Finally, integrated AMTs relate to more complicated systems that 

connect at least two different productive functions. For example, at its most 

extensive CIM can be an enterprise-wide integrated technology involving 

stand-alone, intermediate and integrated technologies that are 

operationally linked with the enterprise database (Brandyberry, Rai, and 

White 1999; Spanos and Voudouris 2009). Robotics does not fall neatly 

within any particular categorisation as it can be adopted either as a 

standalone technology or integrated with other AMTs, such as AMH or 

CAM.  We consider that CAM, AMH and CIM can be viewed on a spectrum 

of integration ranging from stand-alone to intermediate to integrated, while 

acknowledging that the scope of integration can vary for each of these 

                                                 
1 An alternative approach based on functional characteristics divides AMTs into 
three broad categories: (a) design-based, which reduce design cycle times and 
costs, (b) manufacturing-based, which represent basic production technologies, 
and (c) administrative-based, which enable faster and cheaper communication 
both within an organization and across the supply chain (Boyer and Pagell 2000). 
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AMTs given firm-specific manufacturing requirements (Figure 1). The 

nature and purpose of robotics is likely to dictate the extent of integration.  

2.2 Innovation and AMTs 

Innovation is identified as a critical driver of business productivity and 

economic growth (Schumpeter 1934; Romer 1990). Schumpeter (1934) 

argued that the catalyst to innovation is the transformation of knowledge 

into new products or processes. The relationship between innovation 

output and innovation inputs has been used extensively in the literature 

(Crepon, Duguet, and Mairessec 1998; McCann and Simonen 2005; Griffith 

et al. 2008.; Roper, Du, and Love 2008). Numerous scholars have 

attempted to explain why some firms are more likely to innovate, with firm 

characteristics, such as size, sector, ownership, and location being 

identified as influential drivers of innovation output (Audretsch and Feldman 

1996; Boschma 2005; Gordon and McCann 2005; Jordan and O'Leary 

2008; McCann and Simonen 2005; Tether 1998; Romer 1990; Roper, Du, 

and Love 2008). The importance of R&D to innovation activity within firms 

has also been established by many authors (Roper, Du, and Love 2008; 

Freel 2003). Firms engaging in R&D activity benefit their existing stock of 

knowledge resulting in commercial gains from the introduction of new 

products, processes and/ or organisational innovations (Roper, Hewitt-

Dundas, and Love 2004). There is also considerable evidence of the 

importance of external sources of knowledge for innovation outputs 

(Mansury and Love 2008). These external sources of knowledge may 

include linkages with customers, suppliers, competitors and/or research 

institutes (Roper, Du, and Love 2008). Likewise, managerial capabilities 

have been highlighted as an important factor in firm level innovation. 

Successful innovation requires that firms and managers provide clear and 

consistent signals to employees about the goals and objectives of the firm 

(Barnes et al. 2006). In addition, the technologies firms adopt and use, 

such as AMT, can influence innovation capabilities (Santamaría, Nieto, and 

Barge-Gil 2009; Raymond, Croteau, and Bergeron 2009). 
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In recent decades, firms have made substantial investments in AMT 

adoption and their diffusion across the manufacturing sector has been well 

documented. Factors such as firm size (Battisti et al. 2007; Karshenas and 

Stoneman 1993); firm vintage (Arvantis and Hollenstein 2001; Battisti and 

Stoneman 2005); human capital (Arvantis and Hollenstein 2001; Parhi 

2007); cumulative learning from previous adoption experience (learning-by-

using) (Stoneman and Kwon 1994; Colombo and Mosconi 1995; 

McWilliams and Zilbermanfr 1996; Stoneman and Toivanen 1997; Arvantis 

and Hollenstein 2001) seem influential in AMT adoption. R&D (Karshenas 

and Stoneman 1993; Baptista 2000) and market conditions (Arvantis and 

Hollenstein 2001) seem less important. To date, research has focused 

largely on explaining what influences and motivates AMT adoption and the 

relationship between manufacturing capabilities and AMT use (Spanos and 

Voudouris 2009). Empirical evidence in relation to AMT and flexibility 

(Meredith 1988; Lei and Goldhar 1990), low cost (Corbett and 

VanWassenhove 1993), and quality (Parthasarthy and Sethi 1992) is 

positive. It is generally accepted that the primary benefit of AMT use is 

cost-efficient flexibility in the manufacturing function (Sohal 1996).2  

The potential for AMTs to contribute to innovation arises from the ability of 

AMTs to generate economies of scope, i.e. ‘the capacity to efficiently and 

quickly produce any of a range of parts within a family’ (Zammuto and 

O'Connor 1992, p. 702). AMTs may, first, enable firms to adopt more 

flexible production systems allowing smaller batch sizes and enabling firms 

to cope better with perceived environmental uncertainty (Hofmann and Orr 

2005). Having more flexible production systems may also allow firms to 

adopt more complex innovation strategies with potentially higher returns 

(Hewitt-Dundas 2004). AMTs may also facilitate more radical innovation 

strategies as firms seek to create market turbulence by engaging in 

disruptive innovation in order to establish a position of market or 

technological leadership (Anthony et al. 2008; Hang, Chen, and Subramian 

2010). Second, AMTs may lead to efficiency advantages, reducing the cost 
                                                 
2 However, it is important to note that Boyer (1988) reports that manufacturing 
plants that emphasize low costs are also those investing more heavily in AMT. 
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of innovations and increasing post innovation returns. Ceteris paribus this 

will mean that firms would be more likely to innovate or increase their level 

of innovative activity (Levin and Reiss 1984; Calantone, Harmancioglu, and 

Droge 2010). Third, AMTs may lead to improvements in product quality and 

reliability reducing the potential technical uncertainty of innovation, and 

again having positive effects on post-innovation returns. Quality 

improvements may also have a negative impact on the commercial 

uncertainty of innovation (Astebro and Michela 2005). Both are likely to 

contribute positively to firms’ incentive to innovate.  

Despite the potential gains of AMT use there have been relatively few 

studies of the role of AMTs in shaping firms’ innovation activities. Hewitt-

Dundas (2004) explores the role of AMTs in shaping small firms’ innovation 

strategy choices, indicating that firms which have adopted AMTs are more 

likely to adopt ‘complex’ strategies involving the production of new products 

for new markets. Raymond, Croteau, and Bergeron (2009) also focus on 

small firms and demonstrate a relationship between AMT adoption and 

innovation outputs in Spanish small firms. Also in the context of Spain, 

Barges-Gil et al. (2011) argue that AMTs may contribute to explaining 

innovation outcomes in firms which do not undertake R&D. They argue that 

including AMTs as part of the explanation of firms’ innovation achievements 

may help to broaden the relevance of research findings: ‘If the role of 

activities closer to daily routines were highlighted as sources of innovation, 

however, managers may be more likely to enter the innovation process. 

From the perspective of innovation policy, the majority of measures to 

foster innovation has focused on R&D activities and has therefore been 

limited to a subset of innovators’ (p. 416). Santamaría, Nieto, and Barge-Gil 

(2009) report that the use of AMT is a critical factor in the generation of 

product and process innovations in low-and-medium technology (LMT) 

firms but is of limited importance in the case of high technology firms. 

Santamaría, Nieto, and Barge-Gil (2009) argue that non-R&D internal 

activities are important for innovation in LMT industries given the innovation 

process in such industries is not usually the result of the latest scientific or 

technological knowledge, but more likely to involve transforming the 
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general stock of knowledge into economically useful knowledge 

(Santamaría, Nieto, and Barge-Gil 2009). Interestingly, an earlier study 

reports a non-significant association with respect to AMT use and 

innovation capabilities in Swiss firms (Arvanitis, Hollenstein, and Lenz 

2002).  

One potentially important issue in relating AMTs to innovation is that 

appropriating the potential benefits of AMTs may be difficult and time-

consuming. Previous research has highlighted the many difficulties 

experienced by firms with respect to implementation and exploitation of 

AMTs (Sohal 1996). Zammuto and O’Connor (1992), for example, 

summarise the results of a number of studies which illustrate both the 

difficulties of implementing AMTs and the contingencies which may 

influence their effective implementation. As Barges-Gil et al. (2011) remark: 

‘skilled use of AMT is not easy to attain and depends upon several 

contingencies. It triggers many changes and success depends upon the 

ability of a firm to assimilate them and upon changing practices in order to 

afford a better fit with the AMT’ (Barge-Gil, Jesus Nieto, and Santamaria 

2011, p. 419)3. Training may, for example, contribute to enhance individual 

capabilities and firms’ abilities to take advantage of the innovation benefits 

of AMTs (Barge Gil et al 2011). Similarly, more flexible – less hierarchic – 

management structures and cultures may also make AMT implementation 

more effective (Zammuto and O'Connor 1992). We therefore anticipate that 

the initial adoption and implementation of AMT is likely to have a short term 

disruptive effect with benefits only being realised in the medium to long 

term (Spanos and Voudouris 2009). This leads us to our first hypothesis: 

H1a: Adoption of AMTs will lead to a short term disruptive effect on 

innovation performance. 

H1b: Adoption of AMTs will lead to longer-term beneficial effects on 

innovation performance. 

                                                 
3 The process of AMT implementation itself, however, may also have positive 
benefits for innovation by stimulating new innovation as firms go through the 
process of learning-by-using the new technology. 
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2.3 AMT adoption: complementarities and learning-by-using 
effects 

Scholars of AMT adoption and diffusion have used two models to 

conceptualise the trajectories of AMT adoption: the incremental and the 

discontinuous models (Boyer 1999). The incremental model assumes that 

there is a logical, sequential progression in AMT adoption from stand-alone 

to intermediate and finally to integrated technologies. According to the 

incremental model, adoption of a given technology should be deemed 

successful before the next, possibly more complicated, technology is 

adopted (Meredith and Hill 1987). In contrast, the discontinuous model of 

AMT adoption argues that firms move towards using an integrated system, 

such as CIM, in a major discontinuous leap in which all the equipment is 

adopted at once rather than built up incrementally over time. The 

discontinuous model of AMT adoption claims that successful adoption of 

integrated AMT systems requires considerable planning and resources and 

is a complex investment decision largely independent of previous adoption 

decisions (Meredith 1987). A common factor in these contrasting AMT 

adoption models is that firms do not typically adopt one AMT in isolation, 

but various AMTs are adopted either sequentially (incremental model of 

adoption) or simultaneously (discontinuous model of adoption). Our 

analysis extends to investigating whether complementarities arising from 

simultaneous adoption and learning-by-using effects from sequential 

adoption enhance firms’ innovation performance.  

Harnessing complementarities between different activities is an important 

aspect of firms’ strategic decision-making (Milgrom and Roberts, 1990, 

1995). While previous AMT studies have highlighted complementarities 

from adopting a suite of AMTs simultaneously; to date, there is little 

understanding of whether complementary AMTs benefit innovation 

performance. From the innovation literature, we know however that firm 

innovation benefits from complementary human resource management 

practices (Laursen and Foss, 2003) and organisational practices (Lhuillery, 
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2000). Therefore, any complementarities across AMTs are likely to 

enhance firm innovation. 

In the innovation literature, there is also considerable evidence of the 

benefits of experiential learning from initial adoption decisions on 

subsequent adoption decisions. Rosenberg (1972) describes the process 

by which a firm increases its’ stock of knowledge based on its’ previous 

experience with technologies as learning-by-using. Previous studies have 

highlighted the benefit to firms of learning-by-using new technology with 

respect to subsequent adoption decision-making. For instance, Colombo 

and Mosconi (1995) report cumulative learning effects from AMT adoption 

in the Italian metalworking industry, McWilliams and Zilbermanfr (1996) 

report learning-by-using from the adoption of computer technology by 

farmers in California, and Arvantis and Hollenstein (2001) report learning-

by-using effects from use of an earlier generation of manufacturing 

technologies on AMT adoption by Swiss firms.  

In order to determine the influence of AMT complementarities and learning-

by-using effects on innovation, we examine the effect of simultaneous and 

sequential AMT adoption on innovation performance. Two discrete 

activities are complementary if adding one activity increases the returns 

from doing the other. Therefore, we examine how adoption of one AMT 

may complement early adoption of another AMT, and hypothesise that 

simultaneous adoption of two AMTs will lead to increased returns on 

innovation performance. 

H2:  – Simultaneous AMT adoption generates positive complementarities 

increasing the benefits for innovation 

The cross-over and learning from simultaneous adoption is likely to benefit 

firm innovation to a greater extent than singular adoption. However, it is 

difficult to predict in advance where the complementarities, if any, are likely 

to exist between the four AMTs examined in this paper. For example, 

adopting AMTs at adjacent stages of integration may result in 

complementarities being realised. Or, perhaps, the commitment to adopt 
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multiple AMTs simultaneously benefits firm innovation to a greater extent 

than singular AMT adoption regardless of the stage of integration of the 

AMTs.  

In relation to the sequential adoption of AMTs, previous studies have 

illustrated how AMT adoption benefits subsequent adoption (Arvantis and 

Hollenstein 2001; Colombo and Mosconi 1995; McWilliams and Zilbermanfr 

1996). It is likely that as a firm increases its stock of knowledge due to 

learning from earlier AMT adoption, the disruptive effects of subsequent 

AMT adoption and implementation will be eased. Firms that sequentially 

adopt AMTs are likely to reap the benefits of previous ATM experience to a 

greater extent than firms who have no previous ATM experience. 

Therefore, we hypothesise that early adoption and implementation of an 

ATM will enhance the innovation returns from subsequent adoption 

decisions.  

H3:  Early adoption of one AMT will generate learning-by-using effects 

increasing the innovation benefits of subsequent QIM adoption 

3. DATA AND METHODS 

Our empirical analysis is based on the Irish Innovation Panel (IIP) which 

provides data on the innovation activity and AMT use of manufacturing 

plants in Ireland and Northern Ireland over the period 1994 to 2008. More 

specifically, this element of the IIP comprises five surveys or waves 

conducted using similar survey methodologies and common questions. 

Each of the five surveys covers the innovation activities of plants with 10 or 

more employees over a three-year reference period.4  The resulting panel 

is highly unbalanced reflecting non-response in individual surveys but also 

the opening and closure of plants over the period covered.   

 
                                                 
4 Individual survey response rates were: 1994-96, 32.9 per cent; 1997-99, 32.8 per 
cent; 2000-02, 34.1 per cent; 2003-05, 28.7 per cent; 2006-08, 38.0 per cent  
(Roper et al. 1996; Roper and Hewitt-Dundas 1998; Roper and Anderson 2000; 
Hewitt-Dundas and Roper 2008). 
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Plants’ innovation activity in the IIP is represented by the standard 

Community Innovation Survey indicator: the proportion of plants’ total sales 

(at the end of each three-year reference period) derived from products 

newly introduced during the previous three years. This variable has been 

widely used as an indicator of plants’ innovation output (Laursen and Salter 

2006; Roper, Du, and Love 2008; Love, Roper, and Du 2009), and reflects 

not only plants’ ability to introduce new products to the market but also their 

short-term commercial success. Across those elements of the IIP used in 

the current analysis, 17.2 per cent of plants’ sales were derived from newly 

introduced products (Table 1).5  

One rather unusual feature of the IIP is that alongside plants’ innovation 

activity it also provides information on the use and adoption of AMTs by 

manufacturing plants.6 Four specific AMTs are considered: Robotics, 

Automated materials handling, Computer aided production management, 

and Computer integrated manufacturing. For each of these technologies 

survey respondents were asked to indicate whether or not they used the 

technology and, if so, whether they had first introduced this technology in 

the three year period covered by the survey, the previous three years, or 

prior to this. For each respondent this provides an indication of whether 

they are using each technology and an indication of the length of time in 

which it has been in use in the plant. For example, around 19.7 per cent of 

the 2952 observations in the IIP were using Robotics with 7.0 per cent of 

plants adopting this in the three years prior to the date of the survey, 5.2 

per cent adopting 3-6 years before the survey, and 7.2 per cent earlier than 

that (Table 1)7. Computer Integrated Manufacturing (CIM) was 

implemented in around a quarter of plants of which 9.7 per cent reported 

having adopted this technology in the previous 3 years.  

                                                 
5 Variable definitions are given in Annex 1.  
6 While this data is helpful one important limitation of the IIP is also worth noting. 
The structure of the survey questionnaire means that this adoption data is only 
collected for plants which reported undertaking some process innovation during the 
previous three years. Plants need not, however, have undertaken product 
innovation. 
7 Table 2 includes the correlation matrix.  
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The IIP also provides information on a number of other plant characteristics 

which previous studies have linked to innovation outputs.  For example, 

plants’ in-house R&D activities are routinely linked to innovation 

performance in econometric studies with suggestions that the innovation-

R&D relationship reflects both knowledge creation (Harris and Trainor 

1995) and absorptive capacity effects (Griffith, Redding, and Van Reenan 

2003). 54.7 per cent of plants were conducting in-house R&D at the time of 

the IIP surveys (Table 1). Reflecting recent writing on open innovation  

(Chesbrough 2007; Chesborough 2006) external innovation relationships 

have also been shown to play an important role in shaping innovation 

outputs (Oerlemans, Meeus, and Boekema 1998; Ritala et al. 2013), 

complementing plants’ internal capabilities (He and Wong 2012; Cassiman 

and Veugelers 2006; Arora and Gambardella 1990; Belderbos, Carree, and 

Lokshin 2006; Cassiman and Veugelers 2006). Here, we include three 

separate variables representing plants’ external innovation co-operation 

with customers, suppliers and other organisations outside the supply chain. 

Around 30.1 per cent of plants reported having innovation cooperation with 

customers, while 32.6 per cent had backwards innovation cooperation with 

suppliers (Table 1). Links outside the supply chain could be with a variety 

of different types of organisation (e.g. universities, consultants) and here 

we construct a count variable representing the number of types of partner 

with which a plant was cooperating. On average, plants were cooperating 

with around 0.84 organisations outside the supply chain (Table 1). We also 

include in the analysis a variable reflecting the proportion of each plant’s 

workforce which have a degree level qualification to reflect potential labour 

quality impacts on innovation (Freel 2005; Leiponen 2005) or absorptive 

capacity. Finally, studies of the impact of publicly funded R&D have, since 

Griliches (1995),  repeatedly suggested that government support for R&D 

and innovation can have positive effects on innovation activity both by 

boosting levels of investment (Hewitt-Dundas and Roper 2009) and through 

its positive effect on organisational capabilities (Buiseret, Cameron, and 

Georgiou 1995). Here, we therefore include a dummy variable where plants 

received public support for innovation.8 
                                                 
8 Elsewhere we profile the range of public support initiatives for innovation in 
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Our empirical approach focuses on the innovation or knowledge production 

function which represents the process through which plants’ intellectual 

capital is transformed into innovation outputs (Griliches 1995; Love and 

Roper 2001; Laursen and Salter 2006). If Ii is an innovation output indicator 

for plant i the innovation production function might be summarised in cross-

sectional terms as:  

iiiiiiii CONTHSBSFSRDAMTI δβββββββ +++++++= 6543210              
(1)  

Where: AMTi denotes plants’ adoption of AMTs, RDi are plants’ in-house 

R&D investments, FSi, BSi and HSi are forwards, backwards and horizontal 

knowledge search respectively, and CONTi is a vector of other plant level 

controls (Annex 1). Our hypotheses suggest, however, that the innovation 

benefits of AMT adoption may vary depending on the time since adoption 

with the potential for short-term disruption (H1a) and longer-term gains 

(H1b).  To test our hypotheses we estimate a dynamic version of equation 

(1) explicitly identifying AMT adoption in the current (three-year) period and 

in two previous periods, i.e. 

iiii

iiititti

CONTHSBS
FSRDAMTAMTAMTI

δβββ
ββββββ

+++
++++++= −−

654

32212111100

                                
(2)  

Support for H1a requires β10<0, with H1b requiring β11>0 and β12>0.  

 

Our second and third hypotheses relate to potential complementarities and 

learning-by-using effects between AMTs, denoted here AMTA and AMTB. If 

𝐴𝐴𝐴𝑡−2𝐵 = 1 where a firm is an early adopter of AMTB and zero otherwise 

we estimate: 

                                                                                                                            
Ireland and Northern Ireland over the period covered by the IIP (Meehan 2000; 
O'Malley, Roper, and Hewitt-Dundas 2008).  
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    (3) 

For Hypothesis 2, which reflects the complementary benefits of 

simultaneous adoption we anticipate that early adoption of AMTA in period 

t-2 will have greater benefits where a firm also adopts AMTB  in period t-2. 

Here, we test β121>β122. For Hypothesis 3 which reflects the potential 

learning-by-using effects from early adoption of AMTB we test whether 

β101>β102 and/or β111>β112. 

Our choice of estimation method is dictated largely by the fact that we are 

using plant-level data from a highly unbalanced panel and that our 

dependent variables are percentages. We therefore make use of tobit 

estimators, including in each model a set of sector controls at the 2- digit 

level and a series of time dummies to pick up any secular differences 

between the waves of the IIP. Observations are also weighted to provide 

representative results and take account of the structured nature of the IIP 

surveys. 

4. RESULTS 

4.1 Dynamic analysis 

Replicating previous cross-sectional studies of the AMT-innovation 

relationship, we initially undertake a static analysis to determine whether 

AMT use benefits firm innovation (Equation 1). As presented in Table 3, 

only one AMT significantly impacts innovation output. Robotics has a 

marginally significant positive influence on firm innovation. We find no 

evidence of such a relationship between the CAM, AMH or CIM 

technologies and innovation. Our static analysis, similar to previous work in 

this area, therefore indicates a very weak positive relationship between 

AMT adoption and innovation. Arvanitis, Hollenstein, and Lenz (2002) 

report no significant association between AMT adoption and innovation, 
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while a positive AMT-innovation relationship is reported in a number of 

studies, albeit in specific circumstances, such as small firms (Raymond, 

Croteau, and Bergeron 2009), firms that do not undertake R&D (Barge-Gil, 

Jesus Nieto, and Santamaria 2011), and LMT firms (Santamaría, Nieto, 

and Barge-Gil 2009).   

A limitation of this static approach to the AMT-innovation relationship is that 

the AMT coefficients capture the effects of both current and lagged 

adoption. Our dynamic analysis (Eqn. 2) removes this implicit restriction 

and allows us to test H1 which envisages a short term disruption (H1a) and 

a longer term beneficial (H2b) effect from AMT adoption on firm innovation. 

Dynamic analysis of the impact of early (t-2), previous (t-1) and current QIM 

adoption on innovation performance is presented in Table 4. In relation to 

CAM, we see a marginally significant disruption effect in the second period 

and a significant long-term beneficial effect. Contrary to expectations, the 

disruption effects of CAM adoption last for six years before the benefits 

arise. With respect to AMH adoption, there is evidence of a weak disruption 

effect, with positive benefits experienced three or more years after 

adoption. A similar pattern to the CAM-innovation relationship is evident in 

the CIM analysis. CIM adoption results in a negative disruption effect over 

two periods, followed by a significantly stronger longer-term beneficial 

effect.  Finally, in relation to robotics, there is no evidence of a disruption 

effect and limited evidence of longer tem innovation benefits. 

We hypothesised that AMT adoption would result in a short term disruption 

effect (H1a) and a longer term beneficial effect (H1b). We do find 

consistent but weak support for H1a. In relation to three technologies, 

CAM, AMH and CIM, we find evidence of short-term disruption effects, 

although this finding is significant only in the case of CAM. We find stronger 

evidence in support of H1b, particularly in relation to CAM and CIM where 

there are strong longer-term innovation benefits from adoption. 

Interestingly, there is no clear relationship between the pattern of these 

effects and the standalone versus integrative nature of the technologies. Ex 

ante we would have anticipated that short-term disruption effects were 
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likely to be less pronounced for stand-alone AMTs compared to more 

integrated AMTs; whereas we would have anticipated stronger long-term 

beneficial effects from more integrated AMTs. However, this clearly is not 

the case. Of interest too is the contrast in the short-term disruption and 

longer-term beneficial effects evident in relation to CAM, AMH and CIM, a 

pattern which is not evident for robotics. 

Our static and dynamic estimations highlight the importance of taking a 

temporal approach to an examination of the impact of AMT adoption on 

firm innovation. We might conclude from our static analysis, for example, 

that there is no positive innovation benefit from CAM, AMH and CIM 

adoption. This would be wrong as our dynamic analysis clearly identifies 

the longer-term innovation benefits which arise from AMT adoption.  

Other factors also prove important in determining firms’ innovation outputs. 

For example, R&D has a consistently positive and significant effect on firm 

innovation performance. This finding is in line with previous studies (Harris 

and Trainor 1995; Griffith, Redding, and Van Reenan 2003). We also find 

that interactions with suppliers have a positive influence on firm innovation 

performance. Many studies have also reported the positive influence of 

external relationships on firm innovation outputs (Oerlemans, Meeus, and 

Boekema 1998; Ritala et al. 2013; He and Wong 2012; Cassiman and 

Veugelers 2006; Arora and Gambardella 1990; Belderbos, Carree, and 

Lokshin 2006; Cassiman and Veugelers 2006).There is no evidence of a 

relationship between interactions with customers or competitors and firms’ 

innovation performance. Firm size, measured by number of employees, 

does not influence firm innovation performance. We do, however, find a 

positive relationship between a graduate workforce and firms’ innovation 

performance. Firms with increasing proportions of graduates on their 

workforce report an increasing percentage of sales from new products. 

Firm vintage negatively influences firm innovation, whereas exporting and 

externally-owned firms are marginally more innovative. We also find that 

Government support for innovation has a consistently positive and 

statistically significant influence on firm innovation performance. Thus, firms 
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who receive government support for innovation report a higher percentage 

of sales from new products relative to those firms who do not receive such 

support. This finding is in line with earlier studies (Buiseret, Cameron, and 

Georgiou 1995; Love, Roper, and Bryson 2011).  

4.2 Complementarities and learning-by-using effects 

In our investigation of complementarities and learning-by-using effects, we 

attempt to determine if simultaneous and sequential adoption of AMTs 

benefit the firm (see Figure 2). We hypothesise that simultaneous AMT 

adoption may generate positive complementarities increasing the benefits 

to innovation (H2), and that early adoption of one AMT will generate 

learning-by-using effects increasing the innovation benefits of subsequent 

AMT adoption (H3).  

Complementarities exist if the sum of the benefits of adopting AMTs 

separately is less than the benefit of adopting them simultaneously. 

Empirically, we are examining the influence of simultaneous early adoption 

of two AMTs on innovative sales (see Tables 5-8). For instance, Table 5 

presents the results of our complementarity (and learning-by-using) 

analysis for CAM (Equation 3). In the first model in Table 5, we examine if 

early CAM adoption and early robotics adoption generate 

complementarities for innovation. Specifically, we include two variables, 

one which captures whether firms are early CAM and early robotics 

adopters and another which captures those that are early CAM adopters 

but not early robotics adopters. The remaining models in Table 5 examine if 

early CAM and early AMH adoption, and early CAM and early CIM 

adoption generate complementarities for innovation. Our analysis reveals 

that, in each case, early adoption of other AMTs increase the innovation 

value of early adoption of CAM (as is evident from the significant and larger 

coefficient for the first variable in each model capturing simultaneous early 

adoption). 

Tables 6, 7 and 8 relate to AMH, CIM and robotics adoption respectively. In 

Table 6, we see that that simultaneous early adoption of AMH with CAM 
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(and with CIM) enhances the innovation value of AMH; although there is no 

evidence that simultaneous AMH and robotics adoption has a value 

enhancing effect on AMH. Our results in relation to CIM (see Table 7) are 

similar to those for CAM. We find simultaneous adoption with any of the 

other AMTs enhances the innovation value of CIM. In relation to robotics 

(Table 8), we find that simultaneous early adoption of CAM or CIM with 

robotics has a positive effect on the innovation value of adopting robotics, 

although there is no value enhancing effect from simultaneous adoption of 

AMH. Overall, we therefore find strong support for H2 and the idea of 

complementarities between AMTs increasing the benefits to innovation.  

Next, we investigate whether early adoption of one AMT generates 

learning-by-using effects increasing the innovation benefits of subsequent 

adoption of other AMTs. The motivation for investigating whether learning-

by-using effects impact on firm innovation is that early adoption of one AMT 

creates the potential for learning and hence subsequent adoption and 

implementation of an additional AMT is likely to be less onerous. 

Empirically, we test for learning-by-using effects by including variables 

which capture sequential adoption patterns (Equation 3). For instance, in 

the first model in Table 5, we examine if early adoption of CAM and 

subsequent robotics adoption, in both the current (Current CAM * Early 

robotics & Current CAM *no early robotics) and previous (Previous CAM 

*early robotics & Previous CAM *no early robotics) time periods, influence 

innovative sales. In the next models in Table 5, we are examining if early 

AMH adoption and subsequent CAM adoption and if early CIM adoption 

and subsequent CAM adoption benefits innovation. Tables 6, 7 and 8 

presents the learning-by-using effects analysis for AMH, CIM and robotics 

adoption respectively.  

In relation to examining the learning-by-using effects from early robotics 

adoption on subsequent CAM adoption, the direction of the insignificant 

coefficients is not as anticipated (Table 5). In our initial dynamic analysis 

(Table 4), there was a disruptive effect from CAM adoption in the t-1 

(previous) period for innovation. Early AMH adoption reduced the power of 
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the negative effect from CAM adoption in the previous period. The same is 

true for early CIM adoption, which negates the disruptive effect of 

subsequent CAM adoption on innovation.  

Examining learning-by-using effects for AMH adoption (see Table 6); we 

find no evidence of significant learning-by-using from early adoption of CIM, 

CAM and robotics on subsequent AMH adoption benefitting innovation. 

Similarly, there is no evidence of significant learning-by-using effects from 

early adoption of AMH, CAM and robotics for subsequent CIM adoption. In 

relation to learning-by-using effects for robotics adoption, we see evidence 

of learning-by-using effects from early adoption of AMH, CAM and CIM on 

subsequent robotics adoption. Early adoption of other AMTs, in particular 

CAM and CIM, is positively impacting the innovation value of robotics. 

Adding robotics to a process that already has one of these AMTs is 

advantageous to firm innovation.  

Therefore, we find some support for H3 that early adoption of one AMT will 

generate learning-by-using effects increasing the innovation benefits of 

subsequent AMT adoption. In particular we find some evidence of learning-

by-using effects enhancing the innovation benefits from subsequent CAM 

and robotics adoption, although there is no evidence of AMH or CIM 

adoption benefitting from learning-by-using effects from earlier AMT 

adoption. 

4.3 Robustness tests 

We conducted two robustness tests to validate our results with an 

alternative measure of innovative output, and using an alternative 

estimation approach allowing for the potential endogeneity of the 

‘treatment’ represented by firms’ AMT adoption (Maddala 1983). First, in 

our main analysis we use a dependent variable which reflects firms’ sales 

derived from new products. This reflects an emphasis on more radical 

innovation rather than either imitation or more incremental product change 

(Schnaars 1994). To consider whether our results also hold for more 

imitative strategies we repeated the analysis using an alternative and more 
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broadly defined dependent variable - innovative sales from new and 

improved products. Results for the static and dynamic analysis using this 

broader innovation output measure were very similar to those reported in 

Tables 2 and 3 with estimated coefficients having identical sign patterns but 

slightly lower significance levels. Similarly, in terms of complementarity 

between the various AMTs, and in terms of the leaning-by-using effects, we 

find almost identical results for our main dependent variable and the 

broader alternative. Again, complementarity effects between AMTs prove 

strong but leaning-by-using effects are universally positive but almost 

wholly insignificant.  

In a second robustness test we sought to allow for the potential 

endogeneity of the adoption of each of the AMTs, i.e. the possibility that the 

determinants of adoption may also be the determinants of innovation 

outcomes. We estimated two-stage models estimating first a model for the 

probability of adoption and then including the implied Inverse Mills Ratio 

(IMRs) in equations (1) to (3) (Heckman 1979). For both our main and 

alternative dependent variables the IMRs proved largely insignificant with 

the coefficients of interest remaining unchanged in sign and significance. 

5. DISCUSSION AND CONCLUSIONS 

Three key findings follow from our analysis which together has implications 

for managerial practice. First, we find clear evidence of the dynamic profile 

of benefits of AMT adoption – particularly CIM, CAM and AMT - with 

moderate short-term disruption effects but strong and significant long-term 

benefits for innovation. Robotics has weak but consistently positive 

innovation effects. Second, these longer-term innovation benefits are 

strongest where AMTs are adopted contemporaneously suggesting that 

simultaneous adoption creates complementarities between the different 

AMTs. Third, we find only weak evidence of any positive learning-by-using 

effects which may arise where AMTs are adopted sequentially. This 

contrasts strongly with other adoption studies which suggest, for example, 
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strong learning-by-using effects between quality improvement measures 

(Bourke and Roper, 2015).  

In general terms our results confirm those of other studies (Barge-Gil et al., 

2011; Raymond, Croteau and Bergeron, 2009) which find a positive link 

between AMT adoption and aspects of firm performance. In particular, as 

Barge-Gil et al. (2011) suggest, including AMT use and/or adoption 

enriches our understanding of the drivers of firms’ innovation. Because of 

the dynamic nature of our data, however, we are also able to provide new 

insight into the time profile of these effects with strategic implications. 

Specifically, firms considering the adoption of AMTs may choose either an 

incremental strategy – adopting AMTs sequentially – or a discontinuous 

strategy – adopting AMTs simultaneously (Boyer 1999). An incremental 

strategy may minimise disruption and maximise the potential for 

organisational learning, while a discontinuous strategy may risk greater 

short term disruption but generate complementarities in implementation. 

Our evidence suggests that both strategies will generate innovation 

benefits but that a discontinuous strategy is likely to be most beneficial as 

the benefits of the simultaneous adoption of AMTs prove stronger than any 

learning-by-using effects. This is not of course to minimise the difficulties of 

AMT adoption – particularly where multiple AMTs are being adopted 

simultaneously. As Barge-Gil et al. (2011, p. 419) suggest ‘skilled use of 

AMT is not easy to attain and depends on several contingencies’. Indeed, 

our evidence suggests that it may be some years after the initial adoption 

of AMTs before their full performance benefits are realised.  

Aside from suggesting the potential superiority of discontinuous AMT 

adoption strategies our analysis has methodological implications for those 

engaged in studies of AMTs and/or innovation. In terms of AMTs and 

adoption our results suggest the misleading implications which might be 

drawn from cross-sectional studies, and the need to take longer-term 

dynamics into account. The timing of AMT adoption appears crucial to its 

business benefits with coefficients in cross-sectional analyses implicitly 

‘averaging’ opposing short-term disruption and longer-term beneficial 
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effects. Second, as our results on the complementarities between AMTs 

suggest the benefits of individual AMTs are strongly contextual, depending 

on the timing of adoption of other AMTs and potentially on other firm 

capabilities or structural characteristics (Zammuto and O’Connor 1992). In 

terms of innovation, our results reinforce the arguments of Barge Gil et al. 

(2011) and the value of considering tangible as well as intangible 

investments as part of any explanation of firms’ innovation.  

Our analysis suffers from two main limitations. First, our analysis focuses 

on Irish manufacturing businesses only and may therefore be influenced by 

specific national circumstances. The 1994-2008 period considered here, 

however, was a period of rapidly changing institutions in Ireland as well as 

marked changes in the nation’s economic fortunes - the Irish recovery of 

the late 1990s, the 2000-02 high-tech crash, and a period of rapid 

subsequent growth. Second, we focus here purely on the average AMT-

innovation relationship and make little allowance for differences in 

absorptive capacity between firms. The work of Sohal and others (Hofmann 

and Orr 2005; Sohal 1996), however, suggests the potential importance of 

corporate capabilities linked to absorptive capacity for the effective 

implementation of AMTs. Sohal (1996), for example, in his examination of 

AMT adoption by seven manufacturing companies identified a number of 

advantages achieved through AMT adoption including improved flexibility, 

reduced process time, reduced unit costs and improvements in product 

quality. Problems during implementation arose from a lack of in-house 

programming skills, communication between departments and 

management, and the trade-off between short-term production targets and 

the disruption involved in AMT implementation. Other studies have 

emphasised the importance of organisational culture as a pre-condition for 

successful AMT implementation (Zammuto and Oconnor 1992). Are firms 

with stronger skill endowments, for example, able to accelerate the process 

of effective AMT implementation? How does this influence innovation 

outputs and competitive outcomes? Similar questions might also be posed 

in terms of R&D or other in-house resources such as production 
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engineering capabilities. Each of these questions might provide a useful 

focus for future research. 
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Table 1: Sample Descriptives 

 

No. of 
Observations 

Mean 
 

Std.Dev. 
 

 
 

  

Innovative sales from new products (%) 
1679 17.239 23.009 

 
  

Innovative sales from new and 
improved products (%) 

1675 29.084 30.989 
   

    
AMT variables    
Robotics Use 1571 0.197 0.398 
AMH Use 1599 0.290 0.454 
CAM Use 1679 0.397 0.489 
CIM Use 1602 0.232 0.422 
Robotics current adopter 1565 0.070 0.256 
Robotics previous adopter 1565 0.052 0.222 
Robotics early adopter 1565 0.072 0.259 
AMH current adopter 1584 0.110 0.314 
AMH previous adopter 1584 0.073 0.261 
AMH early adopter 1584 0.100 0.300 
CAM current adopter 1679 0.170 0.376 
CAM previous adopter 1679 0.100 0.300 
CAM early adopter 1679 0.127 0.333 
CIM current adopter 1595 0.097 0.296 
CIM previous adopter 1595 0.062 0.241 
CIM early adopter 1595 0.069 0.253 
    
Plant characteristics    
R&D in house  1679 0.547 0.498 
Linkages with customers 1679 0.301 0.459 
Linkages with suppliers 1679 0.326 0.469 
Horizontal linkages 1679 0.839 1.413 
Employment (log) 1679 3.925 1.148 
Firm Vintage 1679 29.263 28.313 
Externally Owned 1679 0.263 0.441 
Workforce with degree (%) 1679 10.446 12.760 
Government  support  1679 0.278 0.448 
Exports (%) 1679 24.482 33.994 

Source: Irish Innovation Panel – waves 2-6. Observations are weighted. Variable 
definitions in Annex 1.  
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Table 3: Static models: Tobit Models of Innovative Sales of New 
Products 

Notes: Models contain industry dummy variables. * denotes significance at the 
10% level; ** at 5% and *** at the 1% level. Source: Irish Innovation Panel – 
waves 2-6. Observations are weighted. Variable definitions in Annex 1.  

 Model 1 Model 2 Model 3 Model 4 
CAM Use 0.103    
 (-1.103)    
AMH Use  0.827   
  (-1.22)   
CIM Use   1.966  
   (-1.318)  
Robotics Use    2.806* 
    (-1.446) 
In-plant R&D 6.355*** 5.770*** 5.587*** 6.174*** 
 (-1.167) (-1.185) (-1.197) (-1.206) 
Linkages with Clients 2.306 2.59 2.376 2.899* 
 (-1.574) (-1.608) (-1.599) (-1.624) 
Linkages with Suppliers 4.246*** 4.361*** 4.643*** 4.288*** 
 (-1.47) (-1.488) (-1.497) (-1.504) 
Horizontal Linkages -0.186 -0.373 -0.396 -0.316 
 (-0.491) (-0.497) (-0.501) (-0.503) 
Employment (Log) 0.105 0.265 -0.017 -0.254 
 (-0.555) (-0.562) (-0.566) (-0.574) 
Firm Vintage -0.072*** -0.076*** -0.066*** -0.063*** 
 (-0.019) (-0.019) (-0.02) (-0.02) 
Export Sales 0.032 0.029 0.026 0.028 
 (-0.02) (-0.02) (-0.021) (-0.021) 
Workforce with Degree  0.148*** 0.157*** 0.160*** 0.154*** 
 (-0.044) (-0.045) (-0.046) (-0.046) 
Government Support  3.387** 3.717*** 3.735*** 3.781*** 
 (-1.315) (-1.327) (-1.344) (-1.357) 
Externally Owned 2.517* 2.518* 2.894* 2.107 
 (-1.502) (-1.512) (-1.537) (-1.554) 
Constant 3.76 3.388 3.62 4.09 
 (-2.589) (-2.609) (-2.632) (-2.67) 

N 1704 1674 1652 1626 
Chi-squared 265.944 261.718 248.948 255.126 
P 0 0 0 0 
Pseudo – R2 0.017 0.017 0.017 0.017 
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Table 4: Dynamic models: Tobit Models of Innovative Sales of New 
Products 

 Model 1 Model 2 Model 3 Model 4 

Current CAM Adoption -1.385 
  

 

 (-1.547) 
  

 

Previous CAM Adoption -3.379* 
  

 

 (-1.818) 
  

 

Early CAM Adoption 5.169*** 
  

 

 (-1.632) 
  

 

Current AMH Adoption 
 

-2.119 
 

 

  
(-1.746) 

 
 

Previous AMH Adoption 
 

3.650* 
 

 

  
(-2.146) 

 
 

Early AMH Adoption 
 

2.400 
 

 

  
(-1.807) 

 
 

Current CIM Adoption  
 

-1.061  

 
 

 
(-1.91)  

Previous CIM Adoption  
 

-0.283  

 
 

 
(-2.329)  

Early CIM Adoption  
 

6.977***  

 
 

 
(-2.11)  

Current robotics Adoption 
  

 2.902 

   
 (-2.239) 

Previous robotics Adoption 
  

 3.522 

   
 (-2.564) 

Early robotics Adoption 
  

 2.406 

   
 (-2.115) 

In-plant R&D 5.979*** 5.807*** 5.505*** 6.133*** 

 (-1.178) (-1.193) (-1.196) (-1.206) 
Linkages with Clients 2.047 2.357 1.853 2.489 

 (-1.591) (-1.617) (-1.605) (-1.627) 
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Notes: Models contain industry dummy variables. * denotes significance at the 
10% level; ** at 5% and *** at the 1% level. Source: Irish Innovation Panel – 
waves 2-6. Observations are weighted. Variable definitions in Annex 1.  
 

 
 
 
 
 
 

Table 4 (continued): Dynamic models: Tobit Models of Innovative Sales of New 
Products 

 
 Model 1 Model 2 Model 3 Model 4 
Linkages with Suppliers 4.619*** 4.415*** 4.965*** 4.610*** 

 (-1.479) (-1.496) (-1.495) (-1.506) 

Horizontal Linkages -0.16 -0.25 -0.333 -0.275 

 (-0.496) (-0.502) (-0.504) (-0.503) 

Employment (Log) 0.22 0.383 0.232 -0.239 

 (-0.566) (-0.572) (-0.567) (-0.576) 

Firm Vintage -0.069*** -0.079*** -0.067*** -0.063*** 

 (-0.019) (-0.02) (-0.02) (-0.02) 

Export Sales 0.034* 0.031 0.027 0.027 

 (-0.02) (-0.02) (-0.021) (-0.021) 

Workforce with Degree  0.153*** 0.157*** 0.158*** 0.133*** 

 (-0.044) (-0.046) (-0.046) (-0.047) 

Government Support  3.421** 3.481*** 3.775*** 4.097*** 

 (-1.335) (-1.34) (-1.347) (-1.36) 

Externally Owned 2.516* 2.291 2.717* 2.259 

 (-1.509) (-1.53) (-1.54) (-1.556) 

Constant 3.369 2.963 3.25 4.267 

 (-2.614) (-2.635) (-2.632) (-2.675) 

N 1679 1651 1638 1618 

Chi-squared 273.795 270.695 258.286 247.654 

P 0 0 0 0 

Pseudo – R2 0.018 0.018 0.017 0.017 
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Table 5: CAM Adoption: Complementarities and Learning-By-Using 
Effects: Tobit Models of Innovative Sales from New Products 

  Innovation  
 

Innovation  
 

Innovation  

 

Sales 
 
  

Sales 
 
  

Sales 
 
 Simultaneous AMT Adoption: Complementarities 

   

Early CAM Adoption: 
w/wo early robotics 

Early CAM Adoption: 
w/wo early AMH 

Early CAM Adoption: 
w/wo early CIM 

Early CAM* 12.89*** Early CAM* 8.180*** Early CAM* 6.951** 

Early Rob (3.853) Early AMH (2.884) Early CIM (2.720) 

Early CAM* 4.974*** Early CAM* 6.113*** Early CAM* 5.884*** 

No Early Rob (1.715) No Early AMH (1.788) No Early CIM (1.826) 
      
      
Sequential AMT Adoption: Learning By Using 

  
  
  
  
  

      

CAM Adoption:  CAM Adoption: CAM Adoption:  

w/wo early robotics adoption w/wo early AMH adoption w/wo early CIM adoption 
Current CAM* -4.250 Current CAM* 11.58** Current CAM* -6.134 

Early Rob (5.361) Early AMH (4.573) Early CIM (6.390) 

Current CAM* 1.227 Current CAM* -0.415 Current CAM* -0.381 

No Early Rob (1.587) No Early AMH (1.565) No Early COM (1.527) 

Previous CAM* -7.195 Previous CAM* -6.254 Previous CAM* 5.516 

Early Rob (5.887) Early AMH (4.232) Early CIM (5.468) 

Previous CAM* -2.147 Previous CAM* -1.916 Previous CAM* -3.952** 

No Early Rob (1.958) No Early AMH (1.982) No Early CIM (1.912) 
       

      
In-plant R&D 7.473*** 

 
7.495*** 

 
7.469*** 

 (0.872) 
 

(0.873) 
 

(0.872) 

Clients Linkages 2.098* 
 

2.274* 
 

2.152* 

 (1.248) 
 

(1.247) 
 

(1.249) 

Supplier Linkages 6.006*** 
 

6.032*** 
 

5.987*** 

 (1.173) 
 

(1.169) 
 

(1.170) 

Horz. Linkages -0.0380 
 

-0.0533 
 

-0.000878 

 (0.413) 
 

(0.413) 
 

(0.413) 

Employment (Log) -0.223 
 

-0.256 
 

-0.153 

 
(0.422) 

 

(0.420) 

 

(0.421) 
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Notes: Models contain industry dummy variables. * denotes significance at the 
10% level; ** at 5% and *** at the 1% level. Source: Irish Innovation Panel – 
waves 2-6. Observations are weighted. Variable definitions in Annex 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5 (continued): CAM Adoption: Complementarities and Learning-By-Using Effects: Tobit 
Models of Innovative Sales from New Products 

 

 
Innovation 

Sales  
Innovation 

Sales  
Innovation 

Sales 
Firm Vintage -0.0506*** 

 
-0.0502*** 

 
-0.0508*** 

 (0.0136) 
 

(0.0135) 
 

(0.0136) 

Externally Owned 3.053*** 
 

3.010*** 
 

3.009*** 

 (1.118) 
 

(1.117) 
 

(1.118) 

Workforce w 
Degree  

0.132*** 
 

0.133*** 
 

0.129*** 

(0.0304) 
 

(0.0304) 
 

(0.0305) 

Govt. Support  3.840*** 
 

3.716*** 
 

3.869*** 

 (1.021) 
 

(1.021) 
 

(1.021) 

Export Sales 0.0244* 
 

0.0259* 
 

0.0256* 

 (0.0146) 
 

(0.0145) 
 

(0.0145) 

Constant 2.912 
 

3.337* 
 

3.114 

 
(1.934) 

 
(1.931) 

 
(1.934) 

Observations 2,860   2,860   2,860 

Adoption CAM 
 

CAM 
 

CAM 

conditional on Rob 
 

AMH 
 

CIM 

Complementarities 3.65* 
 

0.39 
 

0.11 

LBU Current 0.99 
 

6.35* 
 

0.78 

LBU Previous 0.67  0.88  2.72* 
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Table 6: AMH Adoption: Complementarities and Learning-By-Using 

Effects: Tobit Models of Innovative Sales from New Products 
 

  Innovation  
 

Innovation  
 

Innovation  

 
Sales 

 
 

 
Sales 

 
 

 
Sales 

 
 

      
Simultaneous AMT Adoption: Complementarities 

   

Early AMH Adoption: 
w/wo early robotics 

Early AMH Adoption: 
w/wo early CAM 

Early AMH Adoption: 
w/wo early CIM 

Early AMH* 2.126 Early AMH* 8.044*** Early AMH* 8.417** 

Early Rob (3.282) Early CAM (2.888) Early CIM (3.597) 

Early AMH* 2.562 Early AMH* 1.755 Early AMH* 2.389 

No Early Rob (2.076) No Early CAM (2.105) No Early CIM (2.027) 

Early AMH* 2.126 Early AMH* 8.044*** Early AMH* 8.417** 
      
      Sequential AMT Adoption: Learning By Using 

  
  
  
  
  

      

AMH Adoption:  AMH Adoption: AMH Adoption:  

w/wo early robotics adoption w/wo early CAM adoption w/wo early CIM adoption 
Current AMH* -0.800 Current AMH* 0.698 Current AMH* 0.121 

Early Rob (6.561) Early CAM (5.159) Early CIM (8.924) 

Current AMH* -1.794 Current AMH* -1.641 Current AMH* -1.468 

No Early Rob (1.788) No Early CAM (1.743) No Early CIM (1.750) 

Previous AMH* 2.192 Previous AMH* 2.215 Previous AMH* 6.884 

Early Rob (6.841) Early CAM (4.264) Early CIM (4.942) 

Previous AMH* 4.476** Previous AMH* 5.998** Previous AMH* 4.675** 

No Early Rob (2.205) No Early CAM (2.353) No Early CIM (2.314) 

In-plant R&D 7.597***  7.499***  7.522*** 

 (0.875)  (0.874)  (0.874) 

Clients Linkages 2.070*  2.154*  2.082* 

 (1.252)  (1.250)  (1.251) 

Supplier Linkages 5.998***  6.002***  6.035*** 

 (1.174)  (1.172)  (1.173) 

Horz. Linkages 0.0563  0.000510  -0.00697 

 (0.417)  (0.417)  (0.418) 

Employment (Log) -0.203  -0.267  -0.247 

 
(0.422) 

 
(0.420) 

 
(0.420) 
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Table 6 (continued): AMH Adoption: Complementarities and Learning-By Using-Effects: Tobit 
Models of Innovative Sales from New Products 

 

 
Innovation 

Sales  
Innovation 

Sales  
Innovation 

Sales 
Firm Vintage -0.0528***  -0.0521***  -0.0516*** 

 (0.0136)  (0.0136)  (0.0136) 

Externally Owned 2.936***  2.938***  2.912*** 

 (1.121)  (1.120)  (1.121) 

Workforce w 
Degree  

0.132***  0.134***  0.134*** 

(0.0306)  (0.0305)  (0.0305) 

Govt. Support  3.986***  3.936***  3.979*** 

 (1.025)  (1.024)  (1.026) 

Export Sales 0.0220  0.0233  0.0235 

 (0.0146)  (0.0146)  (0.0146) 

Constant 3.146  3.227*  3.117 

 
(1.939)  (1.936)  (1.936) 

      
Observations 2,860   2,860   2,860 

Adoption AMH 
 

AMH 
 

AMH 

conditional on Rob 
 

CAM 
 

CIM 

Complementarities 0.01  3.23*  2.20 

LBU Current 0.02  0.19  0.03 

LBU Previous 0.10  0.62  0.17 
Notes: Models contain industry dummy variables. * denotes significance at the 
10% level; ** at 5% and *** at the 1% level. Source: Irish Innovation Panel – 
waves 2-6. Observations are weighted. Variable definitions in Annex 1.  
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Table 7: CIM Adoption: Complementarities and Learning-By-Using 
Effects:  Tobit Models of Innovative Sales from New Products 

 

  Innovation  
 

Innovation  
 

Innovation  

 

Sales 
 
  

Sales 
 
  

Sales 
 
 Simultaneous AMT Adoption: Complementarities 

   

Early CIM Adoption: 
w/wo early robotics 

Early CIM Adoption: 
w/wo early AMH 

Early CIM Adoption: 
w/wo early CAM 

Early CIM* 14.72*** Early CIM* 8.392** Early CIM* 6.899** 

Early Rob (4.317) Early AMH (3.594) Early CAM (2.721) 

Early CIM* 4.554* Early CIM* 6.463** Early CIM* 3.541 

No Early Rob (2.416) No Early AMH (2.575) No Early CAM (2.921) 
      
      

Sequential AMT Adoption: Learning By Using 
  
  
  
  
  

      

CIM Adoption:  CIM Adoption: CIM Adoption:  

w/wo early robotics adoption w/wo early AMH adoption w/wo early CAM adoption 
Current CIM* -7.971 Current CIM* 0.410 Current CIM* 6.362 

Early Rob (5.756) Early AMH (5.872) Early CAM (8.387) 

Current CIM* 0.589 Current CIM* -0.165 Current CIM* -1.668 

No Early Rob (2.039) No Early AMH (1.997) No Early CAM (1.876) 

Previous CIM* -6.965 Previous CIM* -1.820 Previous CIM* -6.946 

Early Rob (7.478) Early AMH (5.861) Early CAM (6.896) 

Previous CIM* 3.290 Previous CIM* 1.792 Previous CIM* 1.560 

No Early Rob (2.534) No Early AMH (2.501) No Early CAM (2.341) 

      

In-plant R&D 7.615***  7.568***  7.603*** 

 (0.871)  (0.873)  (0.872) 

Clients Linkages 2.089*  2.082*  1.948 

 (1.248)  (1.251)  (1.253) 

Supplier Linkages 5.901***  6.005***  6.101*** 

 (1.173)  (1.173)  (1.173) 

Horz. Linkages -0.0299  -0.0376  0.0470 

 (0.414)  (0.416)  (0.416) 

Employment (Log) -0.187  -0.227  -0.146 

 
(0.420) 

 
(0.419) 

 
(0.420) 
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Table 7 (continued): CIM Adoption: Complementarities and Learning-By-Using Effects:  Tobit 
Models of Innovative Sales from New Products 

 

 
Innovation 

Sales  
Innovation 

Sales  
Innovation 

Sales 
Firm Vintage -0.0519***  -0.0513***  -0.0521*** 

 (0.0136)  (0.0136)  (0.0136) 

Externally Owned 2.970***  2.963***  2.952*** 

 (1.120)  (1.120)  (1.121) 

Workforce w 
Degree  

0.132***  0.130***  0.131*** 

(0.0305)  (0.0305)  (0.0305) 

Govt. Support  3.889***  4.026***  3.871*** 

 (1.023)  (1.025)  (1.025) 

Export Sales 0.0223  0.0237  0.0229 

 (0.0146)  (0.0146)  (0.0146) 

Constant 3.007  3.213*  3.228* 

 
(1.934)  (1.939)  (1.935) 

Observations 2,860   2,860   2,860 

Adoption CIM  CIM  CIM 

conditional on Rob  AMH  CAM 

Complementarities 4.33*  0.20  0.73 

LBU Current 2.01  0.01  0.88 

LBU Previous 1.71  0.33  1.38 
Notes: Models contain industry dummy variables. * denotes significance at the 
10% level; ** at 5% and *** at the 1% level. Source: Irish Innovation Panel – 
waves 2-6. Observations are weighted. Variable definitions in Annex 1.  
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Table 8: Robotics Adoption: Complementarities and Learning-By- 
Using Effects: Tobit Models of Innovative Sales from New Products 

 

  Innovation  
 

Innovation  
 

Innovation  

 
Sales 

 
 

 
Sales 

 
 

 
Sales 

 
 

      
Simultaneous AMT Adoption: Complementarities 

   

Early Robotics Adoption: 
w/wo early AMH 

Early Robotics Adoption: 
w/wo early CAM 

Early Robotics Adoption: 
w/wo early CIM 

Early Rob* 2.393 Early Rob* 13.07*** Early Rob* 14.97*** 

Early AMH (3.275) Early CAM (3.847) Early CIM (4.314) 

Early Rob* 4.168 Early Rob* 0.995 Early Rob* 1.403 

No Early AMH (2.554) No Early CAM (2.432) No Early CIM (2.369) 
      
      

Sequential AMT Adoption: Learning By Using 
  
  
  
  
  

      

Robotics Adoption: Robotics Adoption: Robotics Adoption: 
w/wo early AMH adoption w/wo early CAM adoption w/wo early CIM adoption 
Current Rob* 14.20* Current Rob* -1.375 Current Rob* 9.429* 

Early AMH (8.226) Early CAM (7.129) Early CIM (5.586) 

Current Rob* 0.568 Current Rob* 4.142* Current Rob* 2.451 

No Early AMH (2.237) No Early CAM (2.275) No Early CIM (2.357) 

Previous Rob* 10.23 Previous Rob* 16.12** Previous Rob* 14.22** 

Early AMH (7.566) Early CAM (6.493) Early CIM (6.924) 

Previous Rob* 4.532* Previous Rob* 2.845 Previous Rob* 4.958* 

No Early AMH (2.624) No Early CAM (2.738) No Early CIM (2.755) 

 In-plant R&D 7.639***  7.620***  7.670*** 

 (0.872)  (0.871)  (0.871) 

Clients Linkages 1.980  1.870  1.872 

 (1.251)  (1.250)  (1.250) 

Supplier Linkages 5.986***  5.985***  5.997*** 

 (1.172)  (1.171)  (1.171) 

Horz. Linkages 0.0262  -0.0450  -0.0295 

 (0.414)  (0.412)  (0.412) 

Employment (Log) -0.328  -0.383  -0.358 

 (0.422)  (0.421)  (0.420) 

Firm Vintage -0.0527***  -0.0512***  -0.0520*** 

 
(0.0136)  (0.0136)  (0.0136) 
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Table 8 (continued): Robotics Adoption: Complementarities and Learning-By- Using Effects: 
Tobit Models of Innovative Sales from New Products 

 

 
Innovation 

Sales  
Innovation 

Sales  
Innovation 

Sales 
Externally Owned 2.823**  2.917***  2.831** 

 (1.121)  (1.122)  (1.120) 

Workforce w 
Degree  

0.132***  0.133***  0.134*** 

(0.0305)  (0.0305)  (0.0304) 

Govt. Support  4.019***  3.966***  3.835*** 

 (1.022)  (1.021)  (1.022) 

Export Sales 0.0211  0.0215  0.0208 

 (0.0146)  (0.0146)  (0.0145) 

Constant 3.488*  3.084  3.422* 

 
(1.940)  (1.936)  (1.933) 

Observations 2,860   2,860   2,860 

Adoption Rob  Rob  Rob 

conditional on AMH  CAM  CIM 

Complementarities 0.19  7.23***  7.76*** 

LBU Current 2.60  0.55  1.35 

LBU Previous 0.51  3.61*  1.57 
Notes: Models contain industry dummy variables. * denotes significance at the 
10% level; ** at 5% and *** at the 1% level. Source: Irish Innovation Panel – 
waves 2-6. Observations are weighted. Variable definitions in Annex 1.  
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Figure 1: Technology types and progression 
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Figure 2: Overview of complementarity and LBU hypotheses 
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Annex 1: Variable Definitions 
 
 
 
Innovation 
 

 

  
Innovative sales (new)  
(% sales) 

An indicator representing the percentage of firms’ sales at the time of 
the survey accounted for by products which had been newly 
introduced over the previous three years. 

  
AMT variables 
 

 

  
Current adopter 
 

Binary variable taking value 1 if the plant had first introduced the AMT 
in the previous three years and zero otherwise and is currently using 
the technology. 
 

Early adopter 
 

Binary variable taking value 1 if the plant had first introduced the AMT 
in the previous six years and zero otherwise and is currently using the 
technology. 
 

Previous adopter 
 

Binary variable taking value 1 if the plant had introduced the AMT at 
any time and is currently using the technology.  

  
Firm Resources  
 
 
In plant R&D A binary indictor taking value one if the plant has an in-house R&D 

capacity. 
 

Percentage with degree Percentage of the workforce with a degree or equivalent qualification. 
 

Public support for 
product innovation  

A binary indicator taking value one if the plant had received 
government support for product innovation over the previous three 
years. 
 

Forwards Linkages 
 

A binary indicator taking value one if the plant is co-operating with 
customers as part of its innovation activity.  
 

Backwards Linkages A binary indicator taking value one if the plant is co-operating with 
suppliers as part of its innovation activity. 
 

Other Linkages A count indicator of the breadth of plants’ other innovation partnering 
activity. Takes values 0 to 7 depending on how many different types of 
partner the plant is working with: consultant, competitor, joint venture, 
government laboratory, university, private laboratory, industry 
research centre.  
 

Employment Employment at the time of the survey.  
 

 
 
 
 
 
 



 
 
Creating value from embodied knowledge 

 

 46 

REFERENCES 

Al-Laham, A.; D. Tzabbar; and T.L. Amburgey. 2011. The dynamics of 

knowledge stocks and knowledge flows: innovation consequences of 

recruitment and collaboration in biotech. Industrial and Corporate Change 

20:555-583. 

Anthony, S.D.; M.W. Johnson; J.V. Sinfiled; and E.J. Altman. 2008. The 

Innovators Guide to Growth - Putting Disruptive innovation to work. Boston 

MA: Harvard Business Press. 

Arora, A. and A. Gambardella. 1990. Complementarity and external 

linkages: the strategies of the large firms in biotechnology. Journal of 

Industrial Economics 38:361-379. 

Artz, K.W.; P.M. Norman; D.E. Hatfield; and L.B. Cardinal. 2010. A 

Longitudinal Study of the Impact of R&D, Patents, and Product Innovation 

on Firm Performance. Journal of Product Innovation Management 27:725-

740. 

Arvanitis, S.; H. Hollenstein; and S. Lenz. 2002. The effectiveness of 

government promotion of Advanced Manufacturing Technologies (AMT): an 

economic analysis based on Swiss micro data. Small Business Economics 

19:321-340. 

Arvantis, S. and H. Hollenstein. 2001. The Determinants of the Adoption of 

Advanced Manufacturing Technology. Economics of Innovation and New 

Technology 10:377-414. 

Astebro, T. and J.L. Michela. 2005. Predictors of the survival of 

innovations. Journal of Product Innovation Management 22:322-335. 

Audretsch, D.B. and M.P. Feldman. 1996. R&D Spillovers and the 

Geography of Innovation and Production. The American Economic Review 

86:630-640. 



 
 
Creating value from embodied knowledge 

 

 47 

Baptista, R. 2000. Do innovations diffuse faster within geographical 

clusters? . International Journal of Industrial Organization 18:515-535. 

Barge-Gil, A.; M. Jesus Nieto; and L. Santamaria. 2011. Hidden innovators: 

the role of non-RD activities. Technology Analysis & Strategic Management 

23:415-432. 

Barnes, J.W.; D.W.J. Jackson; M.D. Hutt; and A. Kumar. 2006. The role of 

culture strength in shaping sales force outcomes Journal of Personal 

Selling & Sales Management 26:255-270. 

Bartelsman, E.; G. Van Leeuwen; and H. Nieuwenhuijsen. 1998. Adoption 

Of Advanced Manufacturing Technology And Firm Performance In The 

Netherlands. Economics of Innovation and New Technology 6:291-312,. 

Battisti, G.; H. Hollenstein; P. Stoneman; and M. Woerter. 2007. Inter and 

Intra Firm Diffusion of ICT in the United Kingdom (UK) and Switzerland 

(CH): An Internationally Comparative Study base on Firm-Level Data. 

Economics of Innovation and New Technology 16:669-687 

Battisti, G. and P. Stoneman. 2005. The intra-firm diffusion of new process 

technologies. International Journal of Industrial Organization 23:1-22. 

Belderbos, R.; M. Carree; and B. Lokshin. 2006. Complementarity in R&D 

cooperation strategies. Review of Industrial Organization 28:401-426. 

Boschma, R. 2005. Proximity and Innovation: A Critical Assessment. 

Regional Studies 39:61-74. 

Boyer, K.K. 1999. Evolutionary patterns of flexible automation and 

performance: a longitudinal study. Management Science 45:824-842. 

Boyer, K.K. and M. Pagell. 2000. Measurement issues in empirical 

research: improving methods of operations strategy and advanced 

manufacturing technology. Journal of Operations Management 18:361-364. 



 
 
Creating value from embodied knowledge 

 

 48 

Brandyberry, A.; A. Rai; and G.P. White. 1999. Intermediate performance 

impacts of advanced manufacturing technology: an empirical investigation. 

Decision Sciences 30:993-1020. 

Buiseret, T.; H.M. Cameron; and L. Georgiou. 1995. What differences does 

it make? Additionality in the public support of R&D in large firms. 

International Journal Of Technology Management 10:587-600. 

Calantone, R.J.; N. Harmancioglu; and C. Droge. 2010. Inconclusive 

Innovation "Returns": A Meta-Analysis of Research on Innovation in New 

Product Development. Journal of Product Innovation Management 

27:1065-1081. 

Cassiman, B. and R. Veugelers. 2006. In search of complementarity in 

innovation strategy: Internal R&D and external knowledge acquisition. 

Management Science 52:68-82. 

Cassiman, B. and R. Veugelers. 2006. In Search of Complementarity in 

Innovation Strategy:Cooperation in R&D Internal R&D and External 

Technology Acquisition Management Science & Public Policy 52:68-82. 

Chesborough, H.W. 2006. Open Innovation: a new paradign for 

understanding industrial innovation. Oxford: Oxford University Press. 

Chesbrough, H.W. 2007. Why companies should have open business 

models. MIT Sloan Management Review 48:22-+. 

Colombo, M.G. and R. Mosconi. 1995. Complementarity and Cumulative 

Learning Effects in the Early Diffusion of Multiple Technologies. The 

Journal of Industrial Economics 43:13-48. 

Corbett, C. and L. VanWassenhove. 1993. Tradeoffs? What tradeoffs?: 

competence and competitiveness in manufacturing strategy. California 

Management Review 35:107-120. 



 
 
Creating value from embodied knowledge 

 

 49 

Crepon, B.; E. Duguet; and J. Mairessec. 1998. Research, Innovation And 

Productivi[Ty: An Econometric Analysis At The Firm Level. Economics of 

Innovation and New Technology 7:115-158. 

Freel, M.S. 2003. Sectoral Patterns of Small Firm Innovation: Networking 

and Proximity. Research Policy 32:751-770. 

Freel, M.S. 2005. Patterns of Innovation and skills in small firms. 

Technovation 25:123-134. 

Gordon, N.R. and P. McCann. 2005. Innovation, agglomeration, and 

regional development. Vol. 5, Issue 5, pp. 523-543, 2005. . Journal of 

Economic Geography 5:523-543. 

Griffith, R.; E. Huergo; J. Mairesse; and B. Peters. 2008. Innovation and 

Productivity Across Four European Countries. Oxford Review of Economic 

Policy 22:483-498. 

Griffith, R.; S. Redding; and J. Van Reenan. 2003. R&D and Absorptive 

Capacity: Theory and Empirical Evidence. Scandinavian Journal of 

Economics 105:99-118. 

Griliches, Z. 1995. R&D and Productivity: Econometric Results and 

Measurement Issues. Oxford: Blackwell. 

Hang, C.C.; J. Chen; and A.M. Subramian. 2010. DEVELOPING 

DISRUPTIVE PRODUCTS FOR EMERGING ECONOMIES: LESSONS 

FROM ASIAN CASES. Research-Technology Management 53:21-+. 

Harris, R.I.D. and M. Trainor. 1995. Innovation and R&D in Northern Ireland 

Manufacturing: A Schumpeterian Approach. Regional Studies 29:593-604. 

He, Z.L. and P.K. Wong. 2012. Reaching Out and Reaching Within: A 

Study of the Relationship between Innovation Collaboration and Innovation 

Performance. Industry and Innovation 19:539-561. 



 
 
Creating value from embodied knowledge 

 

 50 

Heckman, J. 1979. Sample Selection Bias as a specification error. 

Econometrica 47:153-161. 

Hewitt-Dundas, N. 2004. The adoption of AMT and innovation strategy in 

small firms. International Journal of Innovation and Technology 

Management 1:17-36. 

Hewitt-Dundas, N. and S. Roper. 2008. Ireland’s Innovation Performance: 

1991-2005. Quarterly Economic Commentary, ESRI, Dublin.:46-68  

Hewitt-Dundas, N. and S. Roper. 2009. Output Additionality of Public 

Support for Innovation: Evidence for Irish Manufacturing Plants. European 

Planning Studies 18:107-122. 

Hofmann, C. and S. Orr. 2005. Advanced manufacturing technology 

adoption - the German experience. Technovation 25:711-724. 

Ichijo, K. and F. Kohlbacher. 2008. Tapping tacit local knowledge in 

emerging markets - the Toyota way. Knowledge Management Research & 

Practice 6:173-186. 

Jordan, D. and E. O'Leary. 2008. Is Irish Innovation Policy Working? 

Evidence from Irish High-Technology Businesses. Journal of the Statistical 

and Social Inquiry Society of Ireland XXXVII:1-45. 

Karshenas, M. and P.L. Stoneman. 1993. Rank, Stock, Order, and 

Epidemic Effects in the Diffusion of New Process Technologies: An 

Empirical Model. The RAND Journal of Economics 24:503-528. 

Knockaert, M.; D. Ucbasaran; M. Wright; and B. Clarysse. 2009. How does 

tacit knowledge transfer inflence innovation speed? The case of science 

based entrepreneurial firms. In Vlerick Leuven Gent Working Paper Series 

2009/07. 



 
 
Creating value from embodied knowledge 

 

 51 

Kotha, S. and P.M. Swamidass. 2000. Strategy, advanced manufacturing 

technology and performance: empirical evidence from U.S. manufacturing 

firms. Journal of Operations Management 18:257-277. 

Kyriakopoulos, K. and K. de Ruyter. 2004. Knowledge Stocks and 

Information Flows in New Product Development. Journal of Management 

Studies 41:1469-1498. 

Laursen, K. and A. Salter. 2006. Open for Innovation: The role of openness 

in explaining innovation performance among UK manufacturing firms. 

Strategic Management Journal 27:131-150. 

Lei, D. and J.D. Goldhar. 1990. Multiple niche competition: the strategic 

use of CIM technology. Manufacturing Review 3:195-206. 

Leiponen, A. 2005. Skills and innovation. International Journal of Industrial 

Organization 23:303-323. 

Levin, R. and P. Reiss. 1984. Tests of a Schumpeterian Model of R&D and 

Market Structure. Chicago: University of Chicago Press. 

Love, J.H. and S. Roper. 2001. Networking and Innovation Success: A 

Comparison of UK, German and Irish Companies. Research Policy 30:643-

661. 

Love, J.H.; S. Roper; and J.R. Bryson. 2011. Openness, knowledge, 

innovation and growth in UK business services. Research Policy 40:1438-

1452. 

Love, J.H.; S. Roper; and J. Du. 2009. Innovation, Ownership and 

Profitability. Internation Journal of Industrial Organization. 

Maddala, G. 1983. Limited Dependent and Qualitative Variables in 

Econometrics. New York: Cambridge University Press. 



 
 
Creating value from embodied knowledge 

 

 52 

Mansfield, E. 1986. Patents and innovation: an empirical study. 

Management Science 32:173-181. 

Mansury, M.A. and J.H. Love. 2008. Innovation, productivity and growth in 

US business services: A firm-level analysis. Technovation 28:52-62. 

McCann, P. and J. Simonen. 2005. Innovation, knowledge spillovers and 

local labour markets. Papers in Regional Science 84:465-485. 

McWilliams, B. and D. Zilbermanfr. 1996. Time of Technology Adoption and 

Learning By Using. Economics of Innovation and New Technology 4:139-

154. 

Meehan, E. 2000. Britain's Irish Question: Britain's European Question?: 

British-Irish relations in the context of the European Union and the Belfast 

Agreement. Review of International Studies 26:83-97. 

Meredith, J. 1987. The strategic advantages of the factory of the future. 

California Management Review 29:17-41. 

Meredith, J. 1988. The role of manufacturing technology in 

competitiveness: peerless lasers processors. IEEE Transactions on 

Engineering Management 35:3-10. 

Meredith, J. and M.M. Hill. 1987. Justifying new manufacturing systems: a 

managerial approach. Sloan Management Review 28:49-61. 

O'Malley, E.; S. Roper; and N. Hewitt-Dundas. 2008. High growth and 

innovation with low R&D: The case of Ireland. In Small Economy Innovation 

System; Comparing Globalization, Change and Policy in Asia and Europe, 

ed. C. Edquist and L. Hommen: Elgar. 

Oerlemans, L.; M. Meeus; and F. Boekema. 1998. Do networks matter for 

innovation? The usefulness of the economic network approach in analysing 

innovation. Tijdschrift voor Economische en Sociale Gcografie 89:298-309. 



 
 
Creating value from embodied knowledge 

 

 53 

Parhi, M. 2007. Global push, Competitiveness, and Adoption of New 

Technologies: Reflections from Indian Automotive Firms. In DRUID 

Summer Conference. Copenhagen, CBS, Denmark. 

Parthasarthy, R. and S.P. Sethi. 1992. The impact of flexible automation on 

business strategy and organizational structure. Academy of Management 

Review 17:86-111. 

Raymond, L.; A.-M. Croteau; and F. Bergeron. 2009. The Integrative Role 

of IT in Product and Process Innovation: Growth and Productivity 

Outcomes for Manufacturing. In Enterprise Information Systems, ed. J. 

Filipe and J. Cordeiro, 27-39. 

Raymond, L.; A.-M. Croteau; and F. Bergeron. 2009. The Integrative Role 

of IT in Product and Process Innovation: Growth and Productivity 

Outcomes for Manufacturing. In Enterprise Information Systems-Bk, ed. J. 

Filipe and J. Cordeiro, 27-39. 

Ritala, P.; K. Henttonen; H. Salojarvi; L.M. Sainio; and S. Saarenketo. 

2013. Gone fishing for knowledge? The effect of strategic orientations on 

the scope of open knowledge search. Baltic Journal of Management 8:328-

348. 

Romer, P.M. 1990. Endogenous Technological Change. Journal of Political 

Economy 98:S71-S102. 

Roper, S. and J. Anderson. 2000. Innovation and E-Commerce - A Cross-

Border Comparison of Irish Manufacturing Plants. Belfast. 

Roper, S.; B. Ashcroft; J.H. Love; S. Dunlop; H. Hofmann; and K. Vogler-

Ludwig. 1996. Product Innovation and Development in UK, German and 

Irish Manufacturing: Queen's University of Belfast/University of 

Strathclyde/ifo Institut. 

Roper, S.; J. Du; and J.H. Love. 2008. Modelling the Innovation Value 

Chain. Research Policy 37:961-977. 



 
 
Creating value from embodied knowledge 

 

 54 

Roper, S.; J. Du; and J.H. Love. 2008. Modelling the innovation value chain 

Research Policy 37:961-977. 

Roper, S. and N. Hewitt-Dundas. 1998. Innovation, Networks and the 

Diffusion of Manufacturing Best Practice: A Comparison of Northern Ireland 

and the Republic of Ireland. Belfast: NIERC. 

Roper, S.; N. Hewitt-Dundas; and J.H. Love. 2004. An Ex Ante Evaluation 

Framework for the Regional Benefits of Publicly Supported R&D Projects. 

Research Policy 33:487-509. 

Santamaría, L.; M.J. Nieto; and A. Barge-Gil. 2009. Beyond formal R&D: 

Taking advantage of other sources of innovation in low- and medium-

technology industries. Research Policy 38:507-517. 

Schnaars, S.P. 1994. Managing Imitation Strategies. New York: Free 

Press. 

Schumpeter, J. 1934. The Theory of Economic Development. Cambridge, 

Mas: Harvard University Press. 

Sohal, A.S. 1996. Assessing AMT implementations: an empirical field study 

Technovation 16:377-444. 

Sohal, A.S. 1996. Assessing AMT implementations: An empirical field 

study. Technovation 16:377-384. 

Spanos, Y.E. and I. Voudouris. 2009. Antecedents and trajectories of AMT 

adoption: The case of Greek manufacturing SMEs. Research Policy 

38:144-155. 

Stoneman, P. and M.-J. Kwon. 1994. The Diffusion of Multiple Process 

Technologies. The Economic Journal 104:420-431. 



 
 
Creating value from embodied knowledge 

 

 55 

Stoneman, P. and O. Toivanen. 1997. The Diffusion of Multiple 

Technologies: An Empirical Study. Economics of Innovation and New 

Technology 5:1-17. 

Tether, B.S. 1998. Small and large firms: sources of unequal innovations?  

. Research Policy 27:725-745. 

Tyre, M.J. and O. Hauptman. 1992. EFFECTIVENESS OF 

ORGANIZATIONAL RESPONSES TO TECHNOLOGICAL-CHANGE IN 

THE PRODUCTION PROCESS. Organization Science 3:301-320. 

Tzabbar, D.; B.S. Aharonson; T.L. Amburgey; and A. Al-Laham. 2008. 

When is the whole bigger than the sum of its parts? Bundling knowledge 

stocks for innovative success. Strategic Organization 6:375-406. 

Wu, J.F. and M.T. Shanley. 2009. Knowledge stock, exploration, and 

innovation: Research on the United States electromedical device industry. 

Journal of business research 62:474-483. 

Zammuto, R.F. and E.J. O'Connor. 1992. GAINING ADVANCED 

MANUFACTURING TECHNOLOGIES BENEFITS - THE ROLES OF 

ORGANIZATION DESIGN AND CULTURE. Academy of Management 

Review 17:701-728. 

Zammuto, R.F. and E.J. Oconnor. 1992. GAINING ADVANCED 

MANUFACTURING TECHNOLOGIES BENEFITS - THE ROLES OF 

ORGANIZATION DESIGN AND CULTURE. Academy of Management 

Review 17:701-728. 

  



 
 
Creating value from embodied knowledge 

 

 56 

 

Centre Manager  
Enterprise Research Centre 

Aston Business School  
Birmingham, B1 7ET 

Enquiries@enterpriseresearch.ac.uk 

Centre Manager  
Enterprise Research Centre 

Warwick Business School  
Coventry, CV4 7AL 

Enquiries@enterpriseresearch.ac.uk 

The Enterprise Research Centre is an independent research centre funded by 
the Economic and Social Research Council (ESRC); the Department for Business, 

Innovation & Skills (BIS); the Technology Strategy Board (TSB); and, through the British 
Bankers Association (BBA), by the Royal Bank of Scotland PLC; Bank of Scotland PLC; 

HSBC Bank PLC; Barclays Bank PLC and Lloyds TSB Bank PLC. 
 

 


	CONTENTS
	ABSTRACT
	1. INTRODUCTION
	2. CONCEPTS AND HYPOTHESES
	2.1 AMTs – standalone and integrated manufacturing processes
	2.2 Innovation and AMTs
	2.3 AMT adoption: complementarities and learning-by-using effects
	3. DATA AND METHODS
	4. RESULTS
	4.1 Dynamic analysis
	4.2 Complementarities and learning-by-using effects
	4.3 Robustness tests
	5. DISCUSSION AND CONCLUSIONS
	REFERENCES

