Innovation and Quality Management – What are the links?

Stephen Roper
ERC and Warwick Business School
Stephen.roper@wbs.ac.uk

SOTA Review No 1: March 2018

TQM and ISO9000 are two of the most widely adopted quality improvement approaches. What does the evidence suggest about the relationship between these quality improvement approaches and firms’ innovation outcomes? Internationally, SOTA studies of ISO9000 adoption suggest small positive innovation benefits of 2-13 per cent. International studies of TQM adoption also suggest positive innovation benefits of 4-7 per cent with the strongest benefits arising from the ‘soft’ elements of TQM related to work practices and cultural change.

A lack of both survey and population data mean we have no evidence of the implications of either ISO9000 or TQM for innovation and firm performance in the UK.

Background

Quality improvement and innovation are established strategies as firms seek to create and defend their competitive position. Is the relationship between them complementary or opposing in nature? Some authors have envisaged a complementary relationship, commenting that: ‘quality and innovation processes are inter-linked and should not be treated separately. Technical change not enhancing quality is illusive because it does not contribute to a sustained and improved strategic competitive advantage, nor does it increase the value creation potential of available resources through quality creation’ (Nowak, 1997, p. 706). Other writers have seen quality improvement processes – which may involve routinisation and standardised business processes – as restricting creativity and innovation.

Two of the most widely adopted quality improvement approaches are TQM and ISO 9000:

- **TQM** has been described as a management philosophy that fosters an organisational culture committed to customer satisfaction through continuous improvement. The TQM philosophy essentially comprises three
key elements: customer focus, people involvement and continuous improvement (see Kanji, 2002, and Moura E Sá and Abrunhosa, 2007).

- Quality Certification initiatives such as ISO 9000, require detailed review and documentation of a firm’s production processes, in accordance with the quality system requirements specified by ISO. The ISO 9000 standard is based on eight principles that address the core values and concepts of quality management: customer focus, leadership, involvement of people, process approach, system approach to management, continual improvement and factual approach to decision making (see Kartha, 2004).

What does the evidence suggest about the relationship between these quality improvement approaches and innovation?

Evidence

There have been relatively few studies of the ISO9000-innovation relationship. Older studies using panel data and matching approaches identified a positive relationship in French and US businesses (Table 1).

<table>
<thead>
<tr>
<th>Study</th>
<th>Data</th>
<th>ISO9000 measures</th>
<th>Innovation Measures</th>
<th>Principal empirical results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terziovska & Guerrero (2014)</td>
<td>220 Australian companies manufacturing and services</td>
<td>Graduated ISO9000 indicator related to state of adoption</td>
<td>Product innovation performance; process innovation performance</td>
<td>Negative for product innovation performance; positive for process innovation performance</td>
</tr>
</tbody>
</table>

SOTA studies adopt two approaches. In a cross-sectional context, the most robust evidence for French businesses uses propensity score matching to correct for any selection effect associated with ISO9000 adoption, and suggests that ISO9000 may increase product innovation measures by 2-13 per cent. In a dynamic context, evidence for Irish manufacturing firms examines the potential for short-term disruption effects before any longer-term innovation benefits. Both effects prove weak.

ISO 9000 has often been interpreted by management researchers as rule-based and ‘mechanistic’. TQM is more complex and includes both rule-based (‘mechanistic’ or ‘hard’) and cultural (‘organic’ or ‘soft’) practices.
Most analyses related to TQM have considered firms' hard and soft practices using multi-dimensional scales rather than explicitly considering firms' adoption of TQM as a strategic step (Table 2). This sheds light on which elements of TQM may drive innovation but obscures the scale of any effect sizes. Studies of these aspects of TQM have typically been small, sectorally-focussed, and survey-based with little claim to causality or improvement in the SOTA. Typically the evidence suggests the strongest association between the 'soft' elements of TQM – e.g. consumer-orientation, team-working – and innovation outcomes (Table 2).

One, more recent, analysis adopts a different approach identifying firms' adoption of TQM as a binary variable and considering the dynamic benefits of adoption. This study suggests that TQM adoption increases innovative sales in Irish manufacturing firms by 4-7 per cent.

Summary and evidence gaps

International evidence provides consistent evidence on the benefits of TQM adoption for innovation outcomes. The most consistent linkage is between the softer elements of TQM and innovation outcomes. Evidence on the innovation benefits of ISO9000 is more limited and more equivocal. Here, studies either find a positive or insignificant effect.

Studies of both ISO 9000 and TQM adoption note the difficulty of implementation and therefore the significant lags which can arise before the realisation of any related benefits. One study comments, for example, that 'implementation of the ISO 9000 standard … concerns the whole organisation and involves changes in the fundamental behaviour and applied routine of employees' (see Pekovic and Galia, 2009, p. 831).

To date we have no robust UK evidence on the implications of either ISO9000 or TQM adoption for innovation or other aspects of business performance. In part this is because no population data is available on the adoption of ISO 9000, TQM, or indeed more recent environmental standards such as ISO 14000.

Table 2: TQM and innovation outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Data</th>
<th>TQM measures</th>
<th>Innovation Measures</th>
<th>Principal empirical results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoang et al. (2006)</td>
<td>204 Vietnamese companies with prior ISO 9000 cert.</td>
<td>Multidimensional scales for soft/hard elements of TQM</td>
<td>Range of measures of number and complexity of innovation</td>
<td>Both hard and soft TQM practices positively influence firm-level innovation</td>
</tr>
<tr>
<td>Perdomo-Ortiz et al. (2006)</td>
<td>Survey data from 105 equipment manufacturers in Spain</td>
<td>Multidimensional scales for soft/hard elements of TQM</td>
<td>Multi-dimensional scales for Business Innovation Capacity (BIC)</td>
<td>Aspects of TQM are positively associated with different dimensions of BIC. No effect size estimates.</td>
</tr>
<tr>
<td>Moura E Sá and Abrunhos (2007),</td>
<td>16 Portuguese footwear companies -</td>
<td>Multidimensional scales for elements of TQM</td>
<td>Extent and adoption of innovation - numeric measures</td>
<td>Weak positive relationships between TQM elements and innovation measures. No effect size estimates.</td>
</tr>
</tbody>
</table>
Martínez-Costa & Martínez-Lorente (2008) | Survey data on 415 Spanish manufacturing and services firms | Multidimensional scales for elements of TQM | Multi-dimensional scales for product and process innovation | Positive relationship between TQM elements and product and process innovation

Prajogo and Hong (2008) | 120 South Korean manufacturing firms with R&D | Multidimensional scales for elements of TQM | Multi-dimensional scale for product innovation | TQM dimensions positively influence product innovation

Hung et al. (2011) | Survey data on 223 Taiwanese high tech firms | Multidimensional scales for elements of TQM | Multi-dimensional scale covering product, process and organisational innovation | A positive relationship between TQM elements and product, process and organisational innovation. No effect size estimates.

Long et al. (2015) | Survey of 35 Malaysian ISO certified manufacturing SMEs | Multidimensional scales for elements of TQM | Multi-dimensional scale covering product and process innovation | Positive relationships on both innovation scales

Antunes et al. (2017) | Survey data on 287 Portuguese SMEs | Multidimensional scales for elements of TQM | Multi-dimensional scale covering product and process innovation | Positive process innovation effects. No link to product changes.

Bourke and Roper (2017) | Survey data 1200 Irish manufacturing firms | Binary adoption variable with date of adoption | Percent of sales from innovative products | Increases innovation outputs 4-7 per cent. No evidence of short-term disruption effect.

Sources

About the author

Stephen Roper is Professor of Enterprise at Warwick Business School (WBS) and Director of the Enterprise Research Centre (www.enterpriseresearch.ac.uk). He has over 30 years’ experience of researching issues related to innovation and innovation policy in the UK and internationally and has published widely in both areas. Stephen regularly acts as a consultant for OECD and the World Bank on issues related to small business development and innovation policy. He is currently working with the OECD to conduct an external review of the Austrian innovation system. He can be contacted at: Stephen.Roper@wbs.ac.uk.

Other SOTA Reviews are available on the Enterprise Research Centre web site www.enterpriseresearch.ac.uk. The views expressed in this review represent those of the authors and are not necessarily those of the ERC or its funders.